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Two Strategies for Handling Unknown 
Loads of Two Coordinating Robots 
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In real situations, a robotic system can work in an unstructured environment in which the 
load is often unknown. This problem is an under-studied one, especially for multi-robot 

systems. In this paper we solve this problem by the 'Unknown Load Distribution' method for 
two coordinated industrial robots Two methods are proposed for the distribution of an 
unknown load. The first method is called *load estimated method', in which the parameters 
associated with the load are estimated using the information provided by two wrist force sensors. 

As a result, the load becomes known, and conventional optimal load distribution methods can 
then be applied to distribute the force. The second method is called the 'force compensation 
method', in which one of the robots (the leader) takes the major role of carrying the load to the 
exact location and the other robot (the follower) follows the leader with a specified force. The 
load is compensated by the follower using force control until the leader can carry the load to 

follow a satisfactory trajectory. To verify the force compensation method, a computer simulation 

is conducted. 

Key Words : Unknown Load, Load Distribution, Coordinating Robot, Load Estimation 
Method, Force Compensation Method, Robot Parameter, Load Parameter, 

Compensating Torque, Compensating Force. 

1. I n t r o d u c t i o n  

The load distribution problem was previously 
studied by a number of papers for multiple 
manipulators (Zheng and Luh, 1988; Luh and 
Zheng, 1988; Cheng and Olin, 1989; Olim and Oh, 
1981; Kreutz and Lokshin, 1988; Kumar and 
Waldron, 1988; Hsu, 1989; Walker et al., 1989; 
Pittelkau, 1988; Wang and Rami, 1988; Shin and 

Makay, 1987; Walker et al., 1989; Yoshikawa and 
Sudou, 1990) and multi-finger hands (Demmel 

and Lafferriere, 1989; Park and Starr, 1989; Cole 
et al., 1989; Murray and Sastry, 1989; Li et al., 
1989; Kerr and Roth, 1986; Arimoto et al., 1987; 
Yoshikawa and Nagai, 1987). In general, these 
studies address the problem of how a load should 

be optimally distributed among multiple robots 
or multiple fingers such that certain criterion can 
be met. For example, Orin and Oh (1981) have 

* Myong Ji University 

studied the control of force distribution for closed 
-.chain robotic mechanisms. A weighed combina- 
tion of energy consumption and load balancing 

was selected as a criterion. The linear program- 

ming technique used to obtain a solution. More 
recently, Zheng and Luh (1988) proposed several 
distribution methods for two coordinated manip- 
ulators using a number of criteria, including least 

energy consumption, minimum force exertion on 
the end-effectors, etc. 

In most of the previous studies, the load mass 

and inertia are assumed known. In reality, how- 
ever, when a robotic system works in an un- 
structured environment, the load is often un- 

known. Unknown load distribution is an under 
-studied problem, especially for multiple robot 

system. Shin and Mckay (1987) address the 

robust trajectory-planning problem for a single 
manipulator under payload uncertainty. Walker 

et al. (1989) propose the adaptive coordinated 
motion control of two arms with unknown toad 
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mass. Yoshikawa and Sudou (1990) deals with 

the on--line estimation of unknown constraints. 

Atkeson et al. (1986) estimated the load parame- 

ters in the one arm case using a wrist force sensor. 

In this paper, the unknown load problem for two 

coordinated arms is analyzed and simulated. 

We propose two methods for load distribution 

among two industrial robots. The first method is 

called ' load estimation method' and the second 

method is called 'force compensation method'. In 

the load estimation method, the load is estimated 

by using two wrist force sensors installed in each 

robot. Once the load is estimated, then all the 

distribution methods previously developed in the 

other works can be used. Our method will be an 

extension of the methods developed for load 

estimaton of a single manipulator  as studied in 

(Atkeson et al., 1986). 

The force compensation method is a com- 

pletely new approach. In this approach, one of the 

robots (the leader) takes the major responsibility 

of carrying the load. Only when the load cannot 

be sustained by the leader, the other robot (the 

follower) assist. Since the load does not need to 

be estimated before the load starts to be carried, 

th is  m e t h o d  is more  r e s p o n s i v e  a n d  

computationally efficient than the first method. 

The orgnigation of the paper is as follows. In 

Section 2, load estimation by two industrial 

robots is first studied. In Section 3, our study is 

concentrated on the force compensation method. 

Simulation results for the force compensation 

method are presented in the Section 4, tbllowed 

by the conclusions. 

2. L o a d  E s t i m a t i o n  M e t h o d  

Load estimation was previously studied for a 

single robot arm in (Atkeson et al., 1986), in 

which a wrist force sensor was used to estimate 

the force. In our study, the estimation method of 

(Atkeson et al., 1986) is extended to two arms 

holding one rigid object. In this case, two wrist 

force sensors are needed for the estimation of the 

load. For convenience, robot 1 is labelled as the 

leader, and robot 2 as the follower. We first derive 

the Newton-Euler  equations for the two robots 

Fig. 1 
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Free body diagram of the load when two 
robots hold one object. (Vc is the linear veloc- 
ity at the centroid, i.e., time derivative ofxe. ) 

c :  
g :  

Also from 

is 

holding one rigid object (Fig. 1). From Fig. l, it 

can be seen that Newton's equation [br the load is 

f ~ - - f z + m c "  g - - m e "  5(c=0 (1) 

where fl : force exerted at the leader end-effector, 

f2 : force exerted at the follower e n d - e f  

fector, 

m~ : mass of the load, 

2"~ :accelerat ion at the centroid of the 

load, 

mass center (centroid) of the load and 

gravitational acceleration. 

Fig. 1, the Euler equation of the load 

N~ - N.~-  (rye+ rz)xf~ + r2x f~-  Ic �9 zbc 

- w c x ( L ,  we) - ' 0  (2) 

where NI, N2 are the moments of the leader and 

follower end-effectors, respectively, 

r12, r2 are the position vector from leader 

to follower and follower to centroid, 

respectively, 

Ic : the centroidal inertia tensor of load, 

we, wc are the rotational velocity and the 

acceleration of the load, respectively and 

x is the vector product. 

As for the kinematics, the following transfor- 

mation relation can be obtained from Fig. 1: 

X -  T1 ~ . Z �9 Tz (3) 

where T. 7~ are 4 •  homogeneous transforma- 
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tion matrices from the base to the end 
-effectors of the leader and follower, 

respectively, 

Z is the transformation matrix from the 
end-effector of the leader to the end 
-effector of  the follower (4 • 4 matrix), 

X is the transformation matrix from the 
end-effector of  the leader to the end 
-effector of  the follower (4 • 4 matrix). 

Let the rotational matrix (3 • 3) of X be R, and 

the position vector (3 • 1) of X be p .  Then, P is 
the same as r~', in Fig. 1, i.e., 

LP~J 
And let the rotation part of T~ be R~, and the 
position part be P~, namely 

F R~ 
":k000 I5) 

Then we have 

R I "  r 1 2 = x l - x 2  (6) 

where xa, x., are position vectors from the base to 

the end-effector of  the leader and follower, 
respectively. Based on these dynamic and 
kinematic relation, the leader and follower 

dynamics can be combined as below. Let f and N 
be 

f = f ~ - f 2  and (7) 
N =  NI - N2 - r12x f l. (8) 

Replacing f~, f2 AT, and N2 in (1) and (2) by (7) 
and (8), one obtains 

f = - -  m c  �9 g + m c  �9 Jc'~ a n d  ( 9 )  

N =  ~;~x_A - r~x A + L . ~ + w~x_( L . w~) 

= r 2 x f  + I ~ .  ( v ~ + w , x ( L .  w~) (10) 

Meanwhile, from F i g .  1, one has 

x ~ = x 2 +  r2, (11) 

and the first and second time derivatives of (11) 

a r e  

~c = ~ z +  w~.xr.~ and (12) 
k'r = 5(2+ ~vcxrz+ w~.x( w c x ~ ) .  (13) 

Here, W~xr2 can vanish, if the angular velocity of  
the rotation about fixed axes is constant. By using 

Eq. (13), Eq. (9) becomes 

f = m c  �9 ( - g +  Ac'z) +~vcxmc �9 r2 

+ WcX(Wcxm~ " r2). (14) 

using Eq. (t4), Eq. (10) becomes 

N : r 2 x m c  �9 ( - g +  k'2) +rz(z~cxmc �9 r~) 

+ r~x [ w~x ( w ~ x m ~ .  r',) ] + L "  w~ 

+ w c x ( l ~  �9 wc) = ( g -  3c'2)xmc �9 r2 

+ rn~. r~x (w~x_r~) + m~" r~x [ w~x (w~xr~) 

+ L "  f v c + w c x ( L ,  we).  (15) 

From the three dimensional version of the 
Parallel Axis Theorem as cited in (Symon, 1971), 
one has 

I 2 = l , + m c [  (r2 r" rz) �9 I - - ( r 2 "  rzr)] (16) 

where I " a 3 • 3 identity matrix and 

I2 " inertia matrix with respect to the fol- 
lower end-effector, i. e., 

I2=1121 /',', I2,~|, a symmetric matrix. 

LI~ ~r32 z . J  

Using Eq. (16) and with some manipulations, 

(15) becomes 

N = ( g - s  r 2 + I c .  ~b~+m~[ ( r f .  r2) . I 

- ( r 2  . r])  ] ~ b ~ + w ~ { L + m ~ [  ( r r  r2) �9 I 

- ( r,~ . r,f) ] } w~= ( g -  s x_mc . r2 + A " ~v~ 

+ w~x (Is �9 w~) (17) 

where/ , , ,  wc=[~i: I~2 I2al[w,l=~Oc �9 I~, in which 

[I~1 Is2 A~JLw~j 

w ~ =  0 Wx 0 wy w .  0 and 
0 0 w~ 0 Wy w~ 

/ . j= [/11 /~ I~ I~ I~ I~] ~. 

Rearranging Eqs. (14) and (17) into matrix 
form, one obtains 

(g- Z3x? - 

me" r2 (18) 
[ �9 w~] + [wcx2 [ �9 w:] I~ 

Denote the above equation as 

F**= l~] �9 Li  (19) 

w h e r e F t i = [ f ] , a 6 •  vector, 
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w,= [~'~og Ez~cx3 + Ewcx3 [w~x3 

0 ] and 
/ ~ j r  _ �9 / !  

L ~ =  m c "  rz , a 10• vector. 

L I~ J 
Here there are 6 known variables (3 in f ,  and 

the other 3 in N ) ,  and 10 unknown variables (1 

in me, 3 in r~, and the other 6 in I~). Eq. (19) 

therefore represents 6 equations in 10 unknown 

variables. Consequently, we need at least two 

different manipulator  configurations to solve the 

unknown variables (12 equations, 10 unknowns). 

However, in general, more data sets can make the 

estimation more precise. [f n data sets are used (n 

> = 2 ) ,  the least-square estimation yields 

W r .  F t =  W T, W .  L i  (20) 

from which one has 

L ~ - - ( W  ~ .  W )  -~"  W ~ .  F~ (21) 

F t  ~ : . 

From Eq. (21), it can be seen that mass (m~) 

and moment of inertia (Iz) as well as r2 can be 

calculated as long as Fr is provided. Using r2, r~ 

can be further derived as 

ri = n., - rz (22) 

where r~z was obtained by using Eq. (6). Using I~ 

and rz, however, Ic can be estimated using (16). 

With the estimated load, the unknown load distri- 

bution can be treated as a known load distribu- 

tion problem. For  a known load, existing 

methods  prev ious ly  d e v e l o p e d  by o ther  

researchers (Zheng and Luh, 1988; Luh and 

Zheng, 1988; Cheng and Olin, 1989; Olin and Oh, 

1981; Kreutz and Lekshin, 1988; Kumar and 

Waldron, 1988; Hsu, 1989; Walker et al., 1989; 

Pittelkau, 1988; Wong and Ravni, 1988; Shin and 

Makay, 1987) can now be used. 

3. Force Compensation Method 

In the three compensation method, the load is 

not estimated, instead, the leader takes the main 

role of carrying the load, and use the position 

control strategy to move the object along a pre- 

defined motion profile. Only when the trajectory 

of the object cannot satisfy the pre-defined 

motion profile, the follower starts to help. In this 

regard, the motion errors of the object are trans- 

formed into the required compensating force for 

the follower, the follower then uses force control 

to provide the compensating force. As a result, the 

position force control strategy as developed in 

our previous work can be used (Kim and Zheng 

1989). In Kim and Zhcng (1989), it also has been 

proved that this kind of position force control 

strategy is stable for two industrial robots carry- 

ing a single rigid object. To apply this position 

force control strategy, a wrist force sensor is 

required to be installed on the follower (Kiln and 

Zheng 1989). 

3.1 Strategy and magnitude of force com- 
pensation 

When the leader follows a given trajectory with 

admissible error bounds, the follower just follows 

the leader without providing any force. When the 

leader is overburdened, the position en'or is 

beyond a certain threshold. This means that one 

or more of  the joint  torques of  the leader exceed 

the maximal joint  tonque, i. e., 

I T,,I ~ I T,~m.xl (23) 
where 7"~z : i-th joint  torque of  leader and 

T~im~x : the maximum limit of T~. 

In this case, the position error becomes 

Ix,-x,~l = E> ~ (24) 

where E : position error and 

8 : admissible position error bound. 

In position control, there always exists some 

position error in normal control, and this kind of  

position error is usually within a bound 8. 

However, when the load is too heavy, the position 

error e will be greater than the bound 8. The 

problem is how to reduce the absolute value of 

the required torque at joint  i. Unfortunately, the 

torque of the leader is not measured, because the 

leader uses position control. The only parameter 
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Fig. 2 Block diagram for unknown load distribution. (force compensation method) 

that can be used is the actual position of the joint. 

One possible way of  reducing the leader torque is 

to reduce the load of the leader. The overall 

control strategy of the system is as follows (Fig. 

2): 

First, the position error is changed to a torque 

value (z/T~) for the leader using 

IATII=I/?, kp. El (25) 
where z/7"1 : required compensating torque, 

]Z': transpose of  leader Jacobian matrix 

and 

kp : position feedback gain. 

Here only the magnitude is selected, and the 

direction of the compensating torque will be 

determined in the next section. 

Secondly, after the required compensating tor- 

que is determined, the compensating force of the 

leader can be calculated as 

AF~ = (J?) - 2 .  zITI. (26) 

This compensating force (z//t,'l) should be pro- 

vided by the follower. This means that the 

compensating force should be added to the fol- 

lower force that is originally designed for the 

follower end-effector. From Fig. 2, it can be seen 

that 

Fs = F<, - (AF~ + F,:) (27) 

where f i  ; input force of the force controller. 

Fa  : desired force of  the follower and 

/Pc : reaction tbrce at the sensor. 

Here, Fc +zIFl  is considered as the new follower 

reaction force. Since, in real applications a force 

sensor is attached to the follower wrist, Fc=F.~. 

Thus the effect of the compensation is equivalent 

to the change of the follower reaction force as 

follows: 

Fs = F~ + AF~ (28) 

where F~ is the new tbllower end-effector force 

after compensation. This equation gives the new 

follower force which needs to be provided to the 

object. The force also reflects the compensation 

effect to the leader. 

This change of force is now transferred to the 

leader using force control of the follower (Shin 

and Makay, 1987). That is, find how the change 

of the follower end-effector force affects the force 

exerted on the leader. After the compensation, the 

force at the leader becomes (Fig, 3) 

F i  = F o -  F~= F~-- zIF~ (29) 

where F o = F I + F z  and F[  is the new leader end- 
effector force after compensation. The new end-  

effector force of the leader should result in smaller 

joint  torques that need to be provided by the 
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Fig. 3 Changing of the end-effector forces after 
force compensation. 

leader. As a result, the position error of the object 
can be reduced. In order to do so, the direction of 
the compensating torque has to be determined. 

The reason for using the compensating torque 
instead of  the compensating force is that the 

analysis of  the selection of the direction is perfor- 
med in the torque domain. Once the direction of 

the compensating torque is selected, the direction 

of the compensating force is determined by (26). 
In the next subsection, the direction of the 
compensating torque will be studied. 

3.2 Direction of the compensating torque 
In order to define the direction of  the compen- 

sating torque, the robot dynamic equations are 

required. The simplified closed form dynamic 
equations of a robot (Tarn et al.  1985) are as 
follows: 

D(q)q+H(q ,  (t) ( t + G ( q ) = T + f f "  (30) 
where D ( q )  : mass matrix, 

H(q, c)) : coriolis and centrifugal matrix, 
G (q) : gravitational vector, 

q=[q...qn] ~', 
~, // are the first and second time deriva- 

tive vectors of  q, respectively, 
T : joint torque vector, 

F : e x t e r n a l  force vector at the end-&- 

fector, and 

j r  ~ transpose of the Jacobian matrix. 

in (30), the elements of the left side are all 
known; let this part be denoted B. As a result, the 
leader and follower dynamic equations become 

7"~=Bt--] r" F~ and (31) 

T2--- B 2 -  J~ , F2. (32) 

The load dynamic Eqs. (I) and (2) can be rewrit- 

ten as follows : 

0 + M.G] 

= f ~  -~- F2 (33) 

where M, Ic : 3 • 3 diagonal matrix representing 
the mass and moments of inertia of the load, 
respectively, 

( ; =  [0 0 g]~, 

b t = [ N ~  A ] al]d 
- (r,~+ r~)xAJ'  

F2___[N2 A 
...... r~xA]  

The elements of the left side of  Eq. (33) are all 

known values once the motion of the object is 
defined. Let this part be denoted as F0. it follows 
that 

Fo= IV~ + Fz. (34) 

From Eq. (31), in order to reduce the absolute 

value of joint torque (T~), both the robot 
dynamics (Bl) and end effector force (El) are 
involved. In the above three Eqs. (31), (32) and 

(34), the values of B1, 132, J~, ]z, and /~  are 
known, and the values of T~, T~, F~, and /,~ are 
unknown. However, the direction of/7o is known, 

because the trajectory of the object is given: 

F0 = K,, /~o,~ (35) 

where Fo~ ; unit vector of F0, a known value and 
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Fig. 4 Components in the torque domain. 

K0 : magnitude of F0, an unknown value. 

Transfer this three value to the torque value using 

Jacobian, that is, 

F 7, J r .  0=f l  �9 (KoFo=) =Ko(f['. Fo=) (36) 

Since (Jr"  Fou) is not a unit vector, we define 
the unit vector as (J1 r .  Fou)u, Then Eq. (36) 
becomes 

J r "  I'~,=KoK~(]?" F o D ~ = K ' ( J r "  Fo~) ~(37) 

where (j~r . Fou) = K~ (Jr  . Fou) u and 

K ' : K o K ~ ,  an unknown value. 

Here, define the orthonormal of ( J r .  Fo , ) ,  as 
(Jr"/~x)u,  for future use. From the previous 
subsection, the amount of compensating torque is 

already calculated as I,Jz, I from Eq. (25), but the 
direction of the compensating torque is not speci- 
fied yet. Therefore, from Eq. (26), the value of the 
end-effector compensating vector A/Fa is un- 

known. Meanwhile, ~F ,  is changed to F{ using 
the compensating value A//~] as in Eq. (29). The 

torque at the joints of the leader then becomes 

(Fig. 4) 

B T T; = l -  ], . F~ 

= B , - ] l "  ( F ~ - z t F , )  

= B , - J r .  (F0-F~)  + 1 7 .  AF,  (38) 

= ( B , + ] r .  F 2 ) - J r "  F o + f f .  AF~ 
- B '  K ' r r ~ .  Fo~)~+zITl  

't FO 

t ~  

. . : -"  / �9 

Fig. 5 Comparison of force and torque domain. Fou 
is unit vector in the force domain. (](Fou) u 
is unit vector in the torque domain. 

where T( is the leader joint torque changed by 

the compensating force and 

B { = B ,  + f f  " 1.'2 (39) 

which is a known vector. 
Here, the original torque value at the leader joints 
is 

T, -- B', - K ' ~ r'r , Fo~,) ~,, (40) 

Therefore, Eq. (38) can be written as 

T { =  T, + zIT~ (41) 

where A T ,  is the compensating torque. The val- 

ues in Eq. (38) are partitioned into a component 
of (J1 r .  Fo~,)~, and the orthogonal component of 

( j r .  Fo~,)~, as ( J r .  P~)~, Here, J r .  Fo~, is the 
value which reflects the torque at every joint of  
the leader, If this torque value is transformed into 

the force domain, it acts as a force which contrib- 
utes to the motion of the object. However, if f t .  
Fx is transformed into the force domain, it does 
not necessarily act as an internal force only, 
because the transformation matrix (Jacobian) is 

not linear (Fig. 5). 

Now, By in (39) can also be divided into the 
two orthogonal torque factors defined above. 
This is possible from Eqs. (31) and (39), in 
which B,, j r .  k~ and J r "  F2 all consist of two 
orthogonal vectors defined by (]r.Fo~) and (][" 
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Representation of compensating torque in the 
torque domain. 

Fig. 6 Direction of z:/T~ (Eq. 46) 

Fx).  Now, B1 can be divided as (Fig. 6) 

T B~ = bl (J, �9 Fo,,) ~ 4- b2 ( j r ,  Fx) ~ (42) 

where , r bl  = B I  ( J 1  �9 F o u )  u, 

b2= [ B ( -  b, ( l (  . Fo~) ul and 

( l~ .  Fx) ~ :  B ; -  bl (JT_. Fo~) 
b2 

tiT1 si divided as 

AT~=K~(JI  ~" Fo~),,+K2(];". F~)~ (43) 

where K~, K2 are unknown constants. By using 
Eqs. (42) and (43), Eq. (38) becomes 

T{= (b~-  K '  + Ir (J~-. Fo~) ~ 
+ (bz + K2) ( J ( -  F~) ~. (44) 

From Eq. (44), one may find that the first term is 
for the motion of the robot only, so compensation 

has to be applied to eliminate the second compo- 
nent. In this application, compensation depends 
on the leader position error. The best possible 
compensation is 

K~=0 and K.z=-sing(b2)[AT~[ (45) 

where .~ing(b~) takes the sign of  b2 and the 
absolute value of  [ATt] comes from Eq. (25). 

Now, the compensating torque is defined by 
Eqs. (43) and (45), as (Fig. 7) 

A T e =  - sing(b2)I~Tll (H, F0 ~ (46) 
Using Eq. (26), the compensating force A/'] 

can also be determined, and the leader and fol- 
lower end-effector forces in Eqs. (29) and (28) 

are changed. As a result, by the equations given 
above, the magnitude of  the leader joint torque 

(T1) will be decreased. Consequently, the posi- 
tion error of  the object can be reduced. In the next 
section, simulation for the force compensation 
method will be studied. 

4. Simulation and Results 

To verify the force compensation method as 
proposed in the previous section, a computer 

simulation was conducted in our study, During 
the motion of  two robots handling one heavy 

load, some required joint torques may be over 
their maximum limits. If  this happens, the robot 

will not behave properly. For continuous motion 
of  the robot, the load of the overloaded joint has 

to be reduced by load distribution. If we know the 

load, it is relatively simple. But in the unknown 
load case, it becomes more complicated as den 

scribed in the previous sections. 
For this simulation, all the position and joint 

torque parameters are adapted for the UNIMA- 
TION PUMA-560 robot. The control method 
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(d) Leader joint displacement (I-6: joint number) 
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T ,  
(e) Leader joint velocity (1-6: joint number) 

Fig. 8 

used in this simulation are the same as in Kim 

and Zheng (1989), i. e., position and force con- 

trol. For  simplicity of  the simulation, gravity 

terms are neglected. 

4.1 Concepts and p r o c e d u r e s  o f  s i m u l a t i o n  

For  normal operation, the leader follows the 

desired positions and the follower follows the 

desired forces given. If one of the leader joints is 

i,'1 

02 

(f) Leader robot dynamics (1-6: joint number) 

overloaded by a heavy load, then the leader 

cannot follow the desired position. In this case, 

when the position error exceeds a certain thresh- 

old, the load distribution algorithm calculates the 

magnitude and direction of  the compensating 

torque, and transforms this compensating torque 

into a compensating force. This compensating 

force is added to the follower end-effector force 

by force control. Because the sum of  the leader 
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and the follower end-efli~ctor forces have to 

remain constant, the leader end-effector force is 

subtracted by the compensating force. As a result, 

the joint torque of  the leader is reduced and the 
leader can move successfully along the desired 
trajectory. The follower can also follow the leader 
with the desired force. 

of the leader end-effector. 

Filthly, calculate the robot dynamics (B~) 

using simplified the Newton-Euler equation as 
developed by Luh, Walker, and Paul for the 
PUMA 560 parameters (Luh et al., 1980; Tran et 

al., 1985). Figure 8 (t) represents as robot 
dynamics during the motion from (48) to (50). 

4.2 Leader robot parameters 
First, we assume that the approximate bound- 

aries of the leader robot motion in joint coordi- 
nates are 

q,~-[--90.  --90. 0. 0. 90. 90.] r and 

cD=[O. - 9 0 .  90. 0. 0. 0.]" (47) 

where q,. is the initial position of  the leader 
and qs is the approximate final position of the 
leader. 

Secondly, assume the joint accelerations to be 

i~ = [ .20 . .20 .  - .2  --,2] " (48) 

Thirdly, calculate the joint velocities and posi- 
tions using the joint accelerations: 

0 = qo+ it" �9 &;It (49) 

where do is the velocity of  the previous step and 
delt is the time interval of  the step and 

o = q , , +  c? �9 delt + ?/ �9 (dell2)/2 (50) 

where q0 is the position of the previous step. The 
position is limited by the boundaries given Eq. 

(47). Figure 8 (d) and (e) represent joint dis- 
placement and velocity, respectively. Figure 8 (d) 
represents the given motion trajectories of the 
leader joints. 

Fourthly, using this joint parameters, calculate 
the end-effector position (x), velocity (2 ) ,  and 
acceleration (2') parameters. The end-effector 
position is determined by the kinematic relations 

of the robot, and the velocity and acceleration are 
determined by 

N~" s (~ and (51) 

R~ ~" , ~ = J  �9 q + ] -  /i. 

where N~ represents the rotation matrix from the 

base to the end- effector of  the leader. Figure 8 

(a), (b) and (c) represent the end-effector posi- 
tion, velocity, and acceleration, respectively. Fig- 
ure 8 (a) represents the given motion trajectories 

4.3 Load parameters  
In practice, we do not know the load parame- 

ters except the motion direction of the load. But 
for the verification of  the load distribution, forces 
of the leader and the follower end-effectors are 

calculated as below. 
Assume that the load configuration is as shown 

in Fig. 9, and the mass (m) is 8 kg (the maximum 
load of a single PUMA 560 in 4 kg). The acceler- 
ation of load (.i:) is calculated as in the previous 
subsection. By the mass and acceleration value of 

the load, the resultant ibrce (F0) can be calcu- 
lated as 

/ ;~=m - 2" (52) 

This is true when we neglect the gravitational 

term (Fx-=-0, in Fig. 9), namely the resultant 
force is the same as the motion direction (Fo"-F,-, 

in Fig. 9). Also, by Eq. (34), end-effector forces 

(F,, F2) can be calculated using 

[Fq (53) 
F0=  W - LF;J 

where W=[16,/~],  a 6•  12 matrix, in which/6 is 

Fr 

,. F. /  /Fo ..... ;:! _/t." / 

/ , , , , '  \ 

( 1 . . u  , . 

Fig. 9 Force components of load and end-effeetors 
due to gravity and motion. 
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a 6 • 6 identity matrix. In Eq. (53), we can select 

W in many other ways. One alternate form is 

w FZs, O, 

where S~= r~xIs, 
Is is 3 • 3 identity matrix and 
r~ is defined in Fig. 9, i----1,2. 

But this method does not give any difference in 

the analysis if we choose the internal force vector 

of the inverse form of Eq. (53). For this simula- 

tion, W is selected as (54), and S~ and $2 are 
determined from Fig. 9 as 

[i ~ [ 4~176 S~= 0 , $2= 0 . (55) 
0 - 0 

Figure 10(a) and (b) represent end-effector 

forces of the leader and the follower, respectively, 

while Fig. 10(c) represents internal forces. Using 
these force values and the robot dynamics, we can 
calculate the leader joint torque. Figure 10(d) 

represents the leader joint torque before compen- 

sation. 

4.4 Results of load compensation 
Because of the overload occuring at some of the 

joints, the position error will exceed the error 
bound. We first select the leader position error 
bound to be 0.004 inch (This is the position 
precision of PUMA 560.). From the given motion 
trajectory of leader end-effector (Fig. 8 (a)), the 
joint torque of  joint 6 exceeds the limit of  its joint 
torque (assume 3Nm of Fig. 10 (d)). This means 

the position error exceeds its limt as well. If  the 
position error exceeds the limt, we calculate the 

amount of compensating torque by Eq. (25). 

Then we select the direction of  compensating 
torque by Eq. (46). Finally, this compensating 
torque is transformed into the compensating force 

by Eq. (26). 
Add this compensating force to the follower 

end-effector force (F2) by force control (Fig. 11 
(a)). As the resultant force (Fo) remains the 

same, the leader end-effector force (F0  will be 
subtracted by the compensating force (Fig. 11 
(b)). Also the internal force (F~) will be changed 

1 , 1  . . . . . . . . . . . . . . .  - - -  - - . . . .  

(a) Leader end-effector force before compensation 

4 

SO 11~ I.~1 

(b) Follower end-effector force before compensation 

(c) Internal force before compensat ion 

i . . . .  

1.3 ~ ~. 

'1 

(d) Leader joint torque before compensation 
(I-6: Joint number) 

Fig. 10 

according to the variation of  end-effector force 

(Fig. 11 (c)). This change of  end-effector forces 
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(a) Leader end--effector force after compensation 
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(b) Follower end-effector force after compensation 

44 
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(c) Internal force after compensation 

1 l 
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(d) Leader joint torque after compensation 
(1--6: Joint number) 

Fig.  11 

affects the joint torque by Eq. (31) and (32). By 

selecting the magnitude and direction of the 
compensating torque as in Eq. (46), the joint 
torque of the leader is decreased and never 
exceeds 3 Nm (Fig. l I (d)).  This also guarantees 
the position error is within the admissible bound 
(0. 004inch) by Eq. (25). 

It is noted that when the compensation force is 
active, the magnitude of all the joint torques is 
changed. This is because the compensation actu- 
ally provides a measure of  compensation torque 
to all the joints, although the error is originally 
caused by only one joint (joint 6 in this simula- 
tion). 

5. Conclusion 

In this paper, the unknown load distribution 
problem is studied. Two different approaches are 
used to solve the problem of unknown load 
distribution. The first approach estimates the load 
using two wrist force sensors, previous methods 
for optimal load distribution the can be applied. 

The second approach provides force compensa- 
tion by the follower when the leader is overload- 
ed. In this method, the position error of the 
leader, which is caused by the compensating tor- 
que value will be reduced. The compensating 
force of the leader can be calculated by this 
compensating torque. This compensating force is 
provided by the follower using a force control 
strategy. As a result, the leader can follow the 
desired motion trajectory of the object. Simula- 
tion results are provided for the force compensa- 
tion method to demonstrate its validity and per- 
formance. 
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